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Abstract-This paper presents the analytical description of the mechanism of the evaporation of the 
liquid drop immersed in another immiscible liquid medium. The above mechanism is related to the case 
when the dispersed phase surface tension is greater than the continuous phase surface tension. Thus, 
as a result of the drop overheating, the vapour nuclei move outside of the drop. The drop size is reduced. 
This process continues to the moment, when the drop is so overheated, that a thermal explosion takes 

place. The results of the mathematical description are compared with experimental data. 

NOMENCLATURE 

al, a~, constants in equations (16) and (17); 

bl, bz, b3, constants of equations (14) and (15); 

c, 
E, 
k, 
L, 
m, 
n, 
PV 

2, 
R 
.P’ 

RP, 
T,, 
T,, 
T 
u, 

constant of equation (1); 
reduced temperature; 
Boltzmann constant; 
heat of evaporation [Cal/g]; 
coefficient [dimensionless]; 
number of molecules in nucleus; 
pressure [G/cm’] ; 
polar co-ordinate; 
drop radius [cm]; 
nucleus radius [cm]; 

dRp/dt [Wsl; 
continuous phase temperature [K]; 
saturation temperature [K]; 
temperature [K]; 
drop velocity in relation to continuous 

phase [cdsl; 
radius component of velocity [cm/s]; 
angle component [cm/s] ; 
specific vapour volume [cm”/g]; 
Cartesian co-ordinate (reduced); 
Cartesian co-ordinate (reduced); 
Cartesian co-ordinate; 
Cartesian co-ordinate. 

Greek symbols 

u, thermal diffusivity [cm2/s]; 

1, thermal conductivity [Cal/m “C s]; 

7, time; 

0, surface tension [dyn/cm]; 
UC, surface tension of the continuous phase; 

bd, surface tension of dispersion phase; 

8, angle co-ordinate; 

IJY viscosity [g/cm s]. 

INTRODUCTION 

In the metastable equilibrium state the regions of the 
created new phase (by means of the phase fluctuations) 
must have a minimal size, being the condition which 
is greater than the initial stability of the newly-created 
phase. The smaller size secondary phase is created as 
the result of the fluctuations disappearing. The new 
phase region of minimal size becomes the vapour 
nucleus in the equilibrium state with the initial phase. 
Using the fluctuation theory conceptions and assuming 
the spherical nucleus we can derive its creation 
probability. 

On the base of the formula from [3] 

1603T2V2 

3kT(TJ T,)‘L’ 

where : 
C = constant 

IN OUR previous work introducing the problems of the Q = liquid-vapour surface tension 
mechanism of evaporation of a liquid drop immersed I/” = specific volume of vapour phase 
in the overheated (with respect to its boiling point) k = Boltzmann constant 

immiscible liquid medium we have shown [l] that 
depending on the ratio of the surface tensions of both 
liquids there must be at least two completely different 
mechanisms of evaporation. 

The case of Q, > (Td connected with the evaporation 
of liquid into a drop which thus takes the shape of a 
flat sheath suspended on the expanding vapour bubble 
is described in our previous paper [2]. The second 
case of 6, < od connected with the removal of the 
creating vapour nuclei from the overheated surface 
layer of a drop to the surrounding liquid is the subject 
of this paper. 

DESCRIPTION OF MECHANISM 

Let us consider a continuous phase uniformly heated 
to the temperature T, into which we introduce the 
liquid drop, which is heated to the temperature of its 
boiling point T, and T, > T,. 

The sloping or rising liquid drop receive a certain 
level of overheating from the surrounding continuous 
phase and thus pass to the metastable equilibrium state. 

(1) 
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L = heat of phase transformation 

T, = boiling point 
T = temperature of the overheated liquid phase. 

As can be seen from [l] the creation of the new phase 
nucleus in the pure liquids depends on their over- 
heating. 

In order to consider the circumstances connected 
with the overheating of the drop during its motion in 

the continuous phase we shall analyse the equation of 
heat transport to the drop. 

The spherical drop is moving with the relative rate U 
(Fig. 1) in the counter-current with respect to the con- 

tinuous phase. 

For the continuous phase: 

grad p = /LAV 

div V = 0. 

For the drop: 

gradp’ = tiAV 

div V’ = 0 

where: 

p = pressure 
V = velocity 
p = viscosity. 

The prime relates to inside the drop. 

Based on the definition of the differential operators 
and on the assumption of spherical symmetry the set 
of equations (3) and (6) may be described in the polar 

co-ordinates. 

FIG. 1. Water drop falling down in silicon oil. The sketch 
for the analytical description. 

Taking into consideration the spherical drop sym- 

metry during the motion of the drop, the equation of 
the heat transport in the polar co-ordinates can be 

derived in the form: . 

(2) 

where : 
T = temperature 

T = time 
V, = radius component of the velocity vector 

V = angle component 
GI = thermal diffusivity coefficient 

A = Laplacian operator 
r = radius coordinate 

0 = angle coordinate. 
Equation (2) in its general form is valid for the 

continuous phase, too. In order to express the detailed 
equations for both phases, the analytical form of the 
components V, and V for the drop and the external 
continuous phase ought to be found. For this purpose 
we shall consider the hydrodynamics of the drop 
motion. 

The above set of the equations let us also calculate 

the current function described by Hadamard [4] and 
Rybczynski [S]. 

The drop is moving in the continuous phase in- 
fluenced by the gravity force. Its motion can be taken 
as potential. 

We will be interested in the calculation of the corn: 
ponents V,, V,, V,‘, V,’ and of the velocity CJ of the 
moving drop. These values are necessary for the 
description of the heat-transfer equations. 

The above mentioned limiting conditions (7) and (8) 
show that the solutions of the set of the equations 
(3)-(6) will be in the form : 

The motion of the liquid inside and outside of the 
drop is described by the identity equations of Navier 
and Stokes [3] and the continuity equation (4). -1~ 

V, = f(r) cos 0, V, = g(r) sin B. 

Similarly for the drop inside, the velocities V, and 
V, as the functions of the variables r and B can be 
exnressed in the form of the functions oroduct. in which 

(3) 

(4) 

(5) 

(6) 

The limiting conditions in this system of co-ordinates 

are as follows : 

v,+ UCOSB (7) 

VH + - U sin 0. (8) 

On the phase division surface the stress tensor com- 

ponents resulting from the phase boundary friction, 
like the normal component prr and the tangent com- 
ponent Pr,, remain constant. 

In the spherical system it is represented by the 

equations in the form : 

(9) 

for r = Ro. (10) 

Besides the known symbols P is the effective pressure 
provoking the motion. 

On the drop surface other conditions ought to be 
realized 

v:=o r = R0 (11) 

v,=o r = R,, (12) 

v, = v; r=RO. (13) 

From the set of the equations (3))(6) with the condi- 
tions (7)-(13) we can univocally calculate the com- 

ponents V,, V,, v,’ and 6. 



Evaporation of a liquid drop in another liquid 461 

every one of the functions is dependent only on one 
parameter. The set of partial differential equations is 
resolved into the set of the normal equations and then 
into the set of algebraic equations. 

Such a procedure is presented in [6]. 
The analysis of the set of the equations and the 

limiting conditions gives the velocity components in 
the form: 

(14) 

(W 

v, = (alrZ+a2)c0se (16) 

V, = - (2al r2 + az) sin e (17) 

where al, ~2, bl, b2, b3 are constants. 
Using the forms (14)-(17) and the conditions (7)-(13) 

we can find al, a2, bl, b2 and bJ. 
After the ~lculation of the components V,, I$“, V, 

Vi and U the equation (2) takes the following form 
for the external region of the drop: 

aT 
-= uc0se 
ar [ 

l-$(a-~)-$(3-a) 1 g 

+Usine l+$(~r--1)-$(3-o) 
I 1 

= rrAhT 1181 

where : 

&.=A!- 
I*+#’ 

The conditions of the equation (18) are: 

?=o, T= T,, p,e,o)= T 

o<e62n, r=~~, T(R~,~,T)=~ 

o<eG2x, r=q T(co,@,z)=T, 

(19) 

(20) 

(21) 

(22) 

(23) 

where T is the temperature of continuous phase a great 
distance away from the drop (r > 4&J and Z is the 
temperature on the phase boundary. 

The solutions (18)-(23) give the temperature dis- 
tribution round the drop, There is a relationship 
between the external region of the drop discussed here 
and, more important for us from the point of view of 
mechanism, the problem of the internal part of the 
drop. They are connected by the condition on the 
phase boundary. 

We shall write now the internal probfem with its 
conditions. For convenience of the numerical calcu- 
lations we shall define the new values and then we shall 
introduce them to equation (2). 

g-z - - (24) 
li- 1; 

x=-L 
Rr 

(25) 

where T, is the boiling point of liquid forming the drop 
and T is the temperature inside the drop. 

The equation (2) after taking into consideration 
the equations (23) and (24) and (16) and (17) has the 
form : 

aE 2a -=: ~- 
a? ( 

u(l-xz)cos~ 8E 

xR; 2Ro > x 

+ 
U(l-x2) t3E 

+2R,x de- 1 
01 a*E f-.-..-+-.- 

R$ 3x2 
’ d2E (26) 

x2~; a82 

The initial and boundary conditions have the form: 

E(x, 8, 0) = 0 (27) 

E( 1, 9, z) = 1 (28) 

g (0, 8, T) = o (29) 

E(x, 0, z) = E(x, n, 2) (30) 

g+,O,T) = g+,T). 
For the convenience of numerical solution the trans- 

formation of the problem into the reduced Cartesian 
coordinates was made when 

we have : 

~=$-(z2+2V2-l)~-+V~ 
0 0 

+-$ ($+g) (32) 

E(Z, V, 0) = 0 (33) 

E(2, V, t) = 1, .P+ v2 = 1 (34) 

f3E - 
av y=o 

= 0. (35) 

The problem (32)-(35) was resolved by numerical 
methods on the computer IBM370. In the solution, 
which will be discussed below, a five point open 
diagram was used. The stability of the problem’s solu- 
tion for the class of functions which are coefficients of 
partial derivatives in equation (32) was proved in [7] 
(see also the Ap~ndix). 

DESCRIPTION OF MECHANISM OF NEW INITIAL 
CONDITIONS FORMULATION 

As was mentioned in the formulation of the condi- 
tions of the equation (32), initially the drop is heated 
to the temperature T = T,(E = 0). 

During all the time of the drop motion the tempera- 
ture on the surface T = 7;(E = 1). During the motion 
the drop is warming; the drop temperature distri- 
bution-for fixed @ = n/4-along the radius, for the 
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fl 
FIG. 2. The temperature distribution within a drop along 
the radius for different time (zr < TV < 73) at constant angle 

0 = 7rl4. 

different periods of time is represented in Fig. 2. The 
presented curves are the results of the solution of the 
equations (32)-(35) up to critical nucleus creation. The 

size of such nucleus may be derived from the equation 
obtained based on the considerations of the statistical 
physics and the Clausius-Clapeyron equation (2) 

2aT, V” 
R*=---- 

UT- Ts) 

where besides the known symbols, L is the heat of 

evaporation and R* is the radius of nucleus. 
In the heating drop zone, when the new phase is not 

yet created, the greater probability of nucleus creation 
in accordance with the formula (1) and the equations 
(32)-(35) is on the surface of phase division. The 

structure of the interfacial surface by its heterogeneity 
facilitates additionally the nucleus creation [8]. We 
are interested in the nuclei whose sizes are near to the 
critical, regarding their stability. 

We are not concerned with the displacement of the 
middle of the nucleus during its growth. It is assumed 

that the middle of the nucleus is on the distance R* 

from the boundary of the drop. This reduction 
(simplification), which leads into a small mistake be- 

cause of a small value of R*/R, enables us to solve 
this problem numerically. The middle of the nucleus is 
located at the lattice nearest to the boundary of the 
drop node built for the differential scheme. 

The nucleus is created at the moment when the 
relative temperature is 

E = m.E,,, 

where m is constant and E,,, is the temperature on 
the drop boundary on the side of the continuous phase. 

For the different values of m the creation probability 
of the nucleus is different. Assuming the value of m for 
fixed continuous phase temperature, we can compare 
the obtained result with the experiment. 

After the nucleus creation on the surface delimited 
by the isotherm E, the nuclei are coalesced and at once 
leave the drop in the form of bubbles. The drop size 
decreases. 

In the region of the created nucleus there is a 
decrease of temperature resulting from the heat transfer 
from the surroundings. At the moment that the nuclei 
leaves the drop, the new temperature profile becomes 

stabilized. The newly created temperature distribution 
is a new initial condition for the subsequent act of the 

nucleus creation through the repeated drop heating to 
the “critical” state. 

For the description of the temperature distribution 

in the region of the creation and growth of the nuclei 
we shall consider the equation of the heat penetration 
to the growing nucleus. 

This problem was considered, among others, in the 

papers [9] and [IO]. The authors have resolved the 
energy balance equation for all regions of the growth 
of the nucleus. In this paper we try to find the tem- 

perature distribution for the nucleus growth in the 
region of its critical size. 

The nucleus growth is the result of the heat pene- 
tration from the region near the nucleus boundary to 

the nucleus. 
The nucleus growth equation for the incompressible 

liquid has the form: 

pR,#,+:pd; = Ap - f (36) 
P 

where R, is nucleus radius, d = dR/dt; p is liquid 
density, # = d2R/dr2: Ap is overpressure in the nucleus 
in relation to the surrounding liquid and cr is surface 

tension. 
Coupling the nucleus growth equation with the heat 

transfer equation we shall get: 

(37) 

With the following conditions: 

T(r,O) = K. 

T(q t) = TV 

(38) 

(39) 

ST iiL p”L . 
=----;?z--_R 

dr ,zR,, 4dR, 1 ’ 
(40) 

where ?;, is temperature round the creating nucleus; 

z is time; p” is vapour density; a is thermal diffusivity 
coefficient; i is thermal conductivity of liquid; 
ri = dn/dt; and n is the number of molecules in the 
bubble with the radius R,. 

To begin with, the coordinate system is placed in 
the middle of the nucleus. The characteristic time of 
the heat transmission in the problem discussed is the 
range of R&k From the other side, the nucleus growth 
time is characterized by the value RJR,. We are 
interested in the range of the critical size of the nucleus 
radius (RP = R*) when its growth is smaller (the R, 

value is small [9]). 
As a result we have the inequality: 

!‘G <<!$!. 
3 RP 

(41) 

The inequality enables us to omit the derivative 
?TK?7 in the equation (37). In the critical size region 
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of the nucleus the expression 

6% aT 
r2 ar 

may also be omitted; if we consider (40), the above 
expression is of the second order, infinitesimal for the 
very small values of R,. The equation (37) simplifies 
to the form : 

a level that the quantity of heat stored in it is equal 
to the quantity of heat necessary for the urgent evap- 
oration (explosion) of the whole mass of liquid building 
the drop. The mechanisms of evaporation at the ex- 
plosion moment are not the subject of this paper. 

AT=O. (42) 

By solving the equation (42) with the conditions (39) 
and (40) we get the equation in the form : 

T=T-Ed R for R ” 
A P P ,ZRR*. (43) 

Therefore in the region covered by the values of nucleus 
growth up to critical, there is a decrease of temperature 
according to the equation (43). 

1. It is assumed that the heat used for the nucleus 
growth is taken from the drop (phase transformation). 
On the phase boundary, on the side of the continuous 
phase, the temperature remains constant. 

After nucleus creation the temperature inside the 
drop remains the same as it is during the forming of 
the nucleus. It is caused by the smaller temperature 
conductivity coefficient for steam than for liquid. 

2. In the region covered by the nucleus growth the 
temperature is decreasing (43). 

R-2R* a r 

FIG. 3. The temperature distribution within a drop at the 
moment of leaving off the drop by the nuclei. 

The discussed mech~ism was verified experi- 
mentally. 

3. In the remaining part of the drop in the middle The measurements were carried out for the liquid 
direction the temperature profile is the same as in the system: (1) silicon oil-SILOL SO-as the continuous 
moment of the beginning of the nucleus creation. phase and (2) water-as the dispersed phase. 

According to the argumentation discussed above The measuring equipment in which the experiments 
after each act of the creation and the leaving off the were done is presented in Fig. 4. 
drop by the nucleus the new initial situation for the The essential element of the equipment is the glass 
numerical problem is created. The exempl~ying tem- cylinder 1 with the thermal sheath. There is the silicon 
perature dis~ibution at this moment is presented in oil on the height H in the cylinder, which is heated to 
Fig. 3. After each act of evaporation the drop size the fixed temperature Tin the thermostats 7. The oil 
decreases, the drop is heating once more to the state level is stabilized by means of the overflow 2. 
ensuring the repeated nucleus creation. Into the continuous phase prepared in this way we 

At a certain moment the drop is overheated to such introduce the water drop by means of the calibrated 

8 

FIG. 4. The scheme of the measuring equipment. 
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FIG. 5. The scheme of the optical system. 

Experimental : 
v T&z= 139°C 
A -I&= 144% 
l Tm- 149°C 
0 Tm = 152’C 

L 
IO I.1 12 13 14 15 16 1.7 1.8 1.9 20 

R O, mm 

FIG. 6. 
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dropper 3, which was previously heated to its boiling 8. L. Trefethen, Nucleation at a liquid-liquid interface, 
point in the thermostat 7. After the partial evaporation J. Appf. Phys. 28,923 (1957). 

the drop is collected in the receiver 4 and then weighted. 9. J. Kagau, On the kinetics of boiling, Zh. Phys. Chim. 

The temperature is measured by means of the thermo- 
34(l), 92 (1960). 

couple system 5. 
10. W.-J. Yang and H.-C. Yeh, Theoretical study of bubble 

dynamics in purely viscous fluids, A.1.Ch.E. JI 12(2), 
The drop motion is observed in the period from the 927 (1966). 

moment of entering the continuous phase to the 
moment of receding from view in the receiver. The 
crossing time is recorded by means of a photodiodes 

APPENDfX 

system linked with the time recorder. This equipment 
In numerical solution of problems (32)-(35) the five point 

is presented in the Fig. 5. 
open diagram was used (Fig. 1) 

The experiment was carried out for different drop 
(CS+l) 

sizes and different continuous phase temperatures, 
(i- 1, s)(l s)(i+ 1, ‘s ) 

(i, s - I). 

DESCRIPTION OF THE RESULTS The partial derivatives for the spatial variable z (indi- 

The results of the experiments are shown in Fig. 6. cator i) are approximated in the following manner: 

The relationship, between the terminal radius of the aZE Ei- l,j,s-2Ei.j.s+Ei+l.j,s 
drop Rk (the radius of the drop before the explosion) s= 2 
and the beginning radius of the drop Ro for the different 
temperatures of the continuous phase, is given there. 

aE E<+l,j,,-Ei-l,j,s 

Broken lines are for experimental data. 
ax’ 2h -’ 

Continuous lines, different for different temperatures Similarly the partial derivatives of the variable V (indi- 

T and m, are for theoretical models. 
cator j). 

Lines running through the experimental points are 
The time derivative is approximated as follows (indi- 

led by interpolation between theoretical lines. 
cator + 

As can be seen from the drawing there are values m 
s = Ei,j,stl-Ei,f 

(different for different overheating) for which good con- 
aT k 

vergence between theoretical model and experimental where h is spatial step and k is time step. 

data exists. We note: 

1. 

2. 

3. 

4. 

5. 

6. 

I. 
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If we have the equation in the form: 

1, and I, will be given the following: 

and 

2minai 
lx<- ~ 

maxbi ’ 
l <2minal 
” maxb2 

The proposed method of the approximation is stable 
when 

and h min(Z,, I,). 

EVAPORATION DUNE GOU’ITE LIQUIDE PLONGEE DANS UN 
LIQUIDE DIFFERENT NON MISCIBLE. CAS cc < cd 

Resume-L’article presente une description analytique du mecanisme d’evaporation d’une goutte liquide 
plongb dam un milieu liquide different non miscible. Le m&&me cidessus se rapporte au cas OU la 
tension superficielle de la phase dispers&e est supbrieure a la tension superficielle de la phase continue. 
Les noyaux de vapeur c&s B la surface surchauffee de la goutte sont eject&s dans le fluide environnant. 
La dimension de la goutte eat r&Juite. Ce processus se poursuit jusqu’au moment ou la goutte devient 
tellement surchaugee que l’explosion thermique se produit. Les r&hats de la description mathbmatique 

sont compares aux &n&es exp&imentales. 
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DIE VERDAMPFUNG EINES FLtkWGKEITSTROPFENS IN EINER ANDEREN, 
NICHT MISCHBAREN FLtJSSIGKEIT FUR DEN FALL r~r < u,, 

Zusammenfassung-Der Mechanismus der Verdampfung eines Fliissigkeitstropfens in einer anderen, 
nicht mischbaren Fliissigkeit wird analytisch beschrieben. Es wird der Fall betrachtet, daB die Ober- 
fltichenspannung der dispersen Phase gr6l3er als diejenige der kontinuierlichen Phase ist. Infolge der 
durch die Uberhitzung bedingten Dampfkeime nimmt der Tropfendurchmesser ab. Dieser Vorgang 
setzt sich solange fort, bis der Tropfen eine solche Uberhitzung besitzt, da13 eine thermische Explosion 
stattfindet. Die Ergebnisse der mathematischen Berechnung werden mit experimentellen Daten verglichen. 

MCIIAPEHME KAI'UIM XKMAKOCTM,IlOTPYXEHHOfi 
B APYrYfO HECMEUlMBAH3~YfOCR Xll~KOCTb, 

AJIcl CJIYLIAFl 0, <pi,, 

Am#oTaqm- AHanMTWIecKiI OnMCblBaeTcfl MeXaHM3M MCnapeHMn KaflJH mL4nKOCTM. nOrFymeHHOk 

B npyryro HecMeUMaatoUytocfi c nepeoR mw~yt0 cpeny. MeXaHMPM McnapeHnfl 0mCblBaeTcfl nns 

cnyqarr, KOrna nOBepXHOCTHOe HaTRTeHMR B nMcnepcHoR cpene 6onbue, LleM B OLlHOpORHO~ +a3e. 

Torna saponblum napa, B03wiKatouuie B pe3ynbTare neperpeea Kanm, BblpbmaloTcn 3a npenenbr 

Kanncl,H Kanm yMewbtuaeTcn B pa3Mepax. 370~ npouecc nponon~aeTcn no Tex nop,noKa Karma He 
IleperpeBae-rCfl HaCTOnbKO, 'IT0 npOMCXORMT Ten,lOBOii B3PblB. AHaJlHTH'deCKNe pe3yJlbTaTblCpaBHH- 

BaEOTCIIC 3KC,IepMMeHTa,IbHblMM DaHHblMM. 


